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Overall CHAPTER 1 Warning Bells

“There is a lot of noise in the jungle, 
        you must only be aware of the dangerous”

Why nailing with a cudgel ?
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1.1 What has gone wrong ?
In development organisations, it is not seldom seen that 
people work backwards like nailing with a cudgel (primi-
tive club). Why ? You never get a carpenter to your 
house with a cudgel to nail with, do you ?

Product development is nowadays in many respects an established and ordinary
business. For example, house and bridge development are several thousands years
of age. Other fields of product development are much younger, for example deal-
ing with software begun in the decade of 1960.

However, in all development fields, there are still products which fail to satisfy end
users. In some newer fields like software, trouble looks to be the standard, but in
other fields it is a bit better. And note, there is no conspiration behind this, no sup-
plier like to disappoint an end user. So what is the problem ?

If digging deeper in the development business in order to
find the root cause to why products fail to satisfy end
users, the most common reason seems to be that up-scaled
development introduce multiplied levels of complexity,
which in turn cause capability and competence problems
when organising development of these products.

Two thousand years ago, the Pantheon building in Rome was an ultimate complex
house construction on the very front of development knowledge at that time, but
should nowadays be a rather modest target for a mid sized construction company.
A complex building of today is a several hundred meter high sky scrape, which
need high tech solutions and sophisticated calculations for strength of construc-
tion materials, and several hundred of workers within many disciplines must be
well organized to make the building being raised. Complexity seem to have
increased over time, which implies that it is certainly possible to coop with larger
and larger complexity.

To analyse complexity a bit further, imagine the two diametrically opposed ends of
complexity, the “ordinary low end”, and the “utmost high end”.

1.1.1 Success from the low complexity world

Houses have been constructed with success for very long. A normally handy per-
son (with some drive) can, for example, extend his private house with some new
space. He may have to contact experts to sort out problems beyond his compe-
tency and hire specialists to help him build, but in the whole, this is not more com-
plex than he can lead the construction work and also take part in the
craftsmanship. The extended space will be of desired cost and quality, and will
function as planned. What possibly fails can afterwards most often be repaired at
modest costs.

This scene is true for many ordinary scaled business in our modern society. (Let be
that the house business recently face new complexity, when being target for a mas-

Why are skilled peo-
ple behaving like nail-
ing with a cudgel ?

Uncontrolled com-
plexity risk to
emerge, when a
business are get-
ting scaled up.
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sive energy saving requirements or when competition press prices for house build-
ing below what is reasonable for persistent quality.)

1.1.2 Success from the high complexity world

There might be air plane crashes and medicines with severe side effects, but to
travel by air or follow a doctor’s subscription is generally very safe. In these cases,
the high complexity of developing aircraft or medicine are undoubtedly handled
with success. Obviously, in these fields, the scaling up of complexity has worked
out very well, even if not totally clean from disasters.

1.1.3 Transition from low complexity to high

However, not all business and companies has manage to
make this transition in a proper way. Computers often
hang up and spoils large amount of work, consumer elec-
tronics fall into pieces and must be expensively repaired,
kitchen equipment barely keep together until warranties
are expired, etc.

In these unsuccessful cases there are of cause a lot of extenuating circumstances,
like everything must be developed in a rush because the market change quickly,
testing is not given enough time and is forwarded to the end users, money is spent
on commercials rather than development etc. And in the software discipline, typi-
cally one after another line of code is added, and the scale-up come very creeping
and invisible, and all of a sudden has ruined the structure of the system.

Many unsuccessful companies might argue, that it is not really their problem if
they fails to deliver satisfying complex products. Who hasn’t heard “the customer
simply gets what they pay for”. But most often an analysis would have showed,
that poor products costs more than they save for both producer and customer.
These products are often in the poor end of the quality scale, and in fact it would
have been more profitable to develop them better from the beginning (at least
when consider the full life cycle of the product).

1.1.4 Is there any trick with scaling up ?

It is recognised for long that when things dramatically
change in scale, the thing is not just anymore the same but
with another size. It get more like 1 + 1 = 3. Sometimes
this is referred as “at some point when increasing quantity,
there is a change in quality” or in our case “at some point
along the scaling-up there must be a change in approach,
sometimes referred as a “paradigm shift” is approaching.

Some companies
retain success
and others fail
when getting into
complexity.

Scaling up is like 1
+ 1 = 3. At some
point more than the
size has changed, a
paradigm shift has
occurred.
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If the paradigm has shifted, the old methodology and
approach must be replaced, and a radical new way of
thinking must be applied. For example, house stairways
must be replaced by elevators when houses get higher,
growing software must be partitioned into smaller
pieces separated with clear interfaces, slide rules get
replaced with digital calculators, key hole surgery being
far more efficient than open big wounds etc. The world
is full of (smaller and bigger) paradigm shifts.

And back to the initial question, why nailing with a cudgel. Developers might nail
with a cudgel because their approach hasn’t been scaled up to the actual complex-
ity facing them. A paradigm shifts has occurred but was ignored. The cudgel was
successful against primitive enemy tribes, but has got very inappropriate for nail-
ing.

1.1.5 Short about complexity

With complexity means, when a set of system parts have relations to each other, in
a way that forms a total system that is hard to understand and predict.

Let’s look at the solar system. When copernicus placed the sun in the middle,
Isaac Newton was able to describe the motion of all planets with his “laws of
motion”. This is rather ordinary mathematics, referred as the “n-body problem”,
which can be analytically handled.

But complexity reappear at this stage. It was rather simple to solve the equation for
n = 2, e.g. two planets like the sun and the earth being alone in the solar system. It
took several hundreds of years to solve it for n = 3, e.g. three planets like the sun,
the earth and the moon being the only planets. For n greater than 3 it is still not
completely analytically solved, but the challenge has lead to a lot of chaos research.

This is in short what happens when scaling-up. Very soon the system parts form a
total system that possibly might be described, but gets hard to understand and pre-
dict. Often such systems are referred as systems in chaos. The system itself doesn’t
know that it is in chaos, of course it is our understanding that is not good enough.

The general way to treat complexity is to make research, in order to enough under-
stand the complexity. If still too complex to be handled, some mitigation can be
tried. One way might be to limit the degrees of freedom and accept a lesser accu-
racy of understanding, for example by approximations (the moon has no influence
on the sun), or to freeze some relations (the sun is assumed fixed in the centre).
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Have you ever reflected over why houses prefera-
bly have right angles between most building ele-
ments. Do you get the point? Simply because this
lowers the complexity and makes a house easier to
understand, predict and build. The Beijing Bird's
Nest, not having two similar angles anywhere, has
such large complexity that it had been impossible
to handle in the slide rulers era, but could be mas-
tered by designing with powerful computers.

1.2 When should you hear the warning bell ?

A company having problem with mastering its complexity, shows many symptoms
from this if anybody care to watch. And most often these symptoms has continued
for a long time. Scaling up is a slowly creeping effect, and problems may be small
and silent in the beginning, but hitting hard after a while if not cured.

And there are reasons to watch out. The first company to identify an approaching
paradigm shift and succeeding to overcome the challenge, is coming out very
strong and competitive. Instead of being gradually slowed down by growing legacy
complexity, they can capitalize on their new way of mastering it, and in short time
get ahead of their competitors.

The most obvious examples are paradigm shifts in warfare, which could even
change the balance of power between whole countries. A lot of effort is spent on
intelligence and reconnaissance in order to watch the enemies effectiveness.

One may perhaps argue that it is not a big problem if a
development organisation is internally messy and in disor-
der, because this will not trouble their customers. But this
is often wrong, because this disorder will as well be built
into their products, which will get the same lack of struc-
ture and quality, and will thereby finally hit their custom-
ers.

To identify problems with mastering complexity in development organisations,
watch out for the following 13 warning-bells:
1. "EXAMPLE: Unrealistic campaigns continually restarted" (page 28).
2. "EXAMPLE: Management not being accountable" (page 28)
3. "EXAMPLE: Root cause analysis being suppressed" (page 29)
4. "EXAMPLE: New wrapping with same content" (page 30)
5. "EXAMPLE: Ego people being change agents" (page 30)
6. "EXAMPLE: Sub optimization within local organizations" (page 30)
7. "EXAMPLE: Scapegoats of a blame game" (page 31)
8. "EXAMPLE: Products driven by engineers" (page 31)
9. "EXAMPLE: Product structure being degenerated" (page 32)
10. "EXAMPLE: Impossible principles applied" (page 32)

Disorder during de-
velopment, result in
that this disorder is
also built into de-
veloped products.
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11. "EXAMPLE: Artificial complexity being pushed" (page 33)
12. "EXAMPLE: Intrinsic complexity being ignored" (page 33)
13. "EXAMPLE: Devils in the details being ignored" (page 34)
14. /* EXAMPLE: Continually decision reset */

1.2.1 EXAMPLE: Unrealistic campaigns continually restarted

In this case, improvement campaigns are being broadcasted from management and
the message from them might look like Figure 1-1 below.

FIGURE 1-1 Improvement campaign goals

Probably you have seen such programs sometimes passing
by. Most of the energy is put on cheering and making noise,
and less on analysing, understanding and implementation
of changes. Very often these campaigns are very intense in
the beginning but are fading out as time pass. You may also
have ended up with the feeling, that not much have been
achieved at the end of the campaign (even if graphs are cir-
culated proving the contrary). And for that so little is deliv-
ered, seldom anybody are found responsible.

When a new manager enter the organisation, the campaign is restarted again to
show drive and energy. But of course with different names, concepts and symbols,
but with the same type of unrealistic campaign.

1.2.2 EXAMPLE: Management not being accountable

Managers are the most important group of employees, when to establishing good
and efficient working models. Over and over again, it has been found that making
improvements and establishing working models is more or less impossible without

Warranty
 Cost

Cost of
Sale

This year Year 2 Year 3 Year 4

Development
Time

Development
Cost

Why are many or-
ganizations run-
ning improvement
projects, one after
another, without
sustainable re-
sults ?
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active support from managers. Keep a watch on the following criteria, which often
prevent from setting a sound company culture: 

• Managers not specially interested in how his inferiors are working, and claim-
ing that they are expected to sort out that themselves.

• Managers thinking it is more important keeping pease in his organisation and 
reporting to superior management that everything is working fine, instead of 
risking noise from solving severe problems.

• Managers not ever acting pro actively to problems. Their habit is always to wait 
until the failure is a matter of fact, before they take action.

• Managers pretending to be interested in work models, but just desire to silence 
their conscience. They might engage persons to document and improve, with 
the hidden agenda to archive the results in binders in order to be forgotten.

• Managers acting grandiose, and claim that they already have everything under 
control. For example, imagine that this book were shown to them. They would 
answer that here is nothing new they didn’t already knew. It’s a great book, but 
we already work according to it.

It is seldom possible to influence on which managers
there are in a company, but yet it sets the level for
improvement success. It is waste of energy to try to
improve companies with inappropriate management.

1.2.3 EXAMPLE: Root cause analysis being suppressed

Sometimes a frenetic “improvement wave” can be spread over an organisation.
One after another wants to be the best on improving the way of work. It may even
happen that upper managers tries to beat each other with efficiency programs and
rewarding improvement proposals.

Their eagerness admit no time to structure the improve-
ment work, and improvements get started on every imagi-
nable spot of the organisation. Everything are object for
reparation and improvement. Current work models are
declared insufficient and are discarded (and forgotten),
like throwing the baby out with the bath water, in favour
for new bright improvements to come.

Unfortunately, sufficient analysis are not being made,
pointing out the poor parts being most urgent targets for
improvements, and what parts in fact is “good enough”, at least for a while. Nei-
ther it is planned in what order the poor parts need to be fixed. Often organisation
are very well aware of existing real problems and bottle necks, but courage are lack-
ing to present these facts and get these problems visible. It is much more conven-
ient to sweep the most ugly problems under the carpet and report about more
harmless shortages. They are not so embarrassing and they are much easier to fix.

“The management
culture” is the most
influential on how
complexity is han-
dled and improved.

An objective and
honest root cause
analysis might be
embarrassing and
inconvenient, but is
most essential for
serious improve-
ment management
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1.2.4 EXAMPLE: New wrapping with same content

Even if development is complex, there is certainly a
limited amount of fundamental ways how to organize
product development. This fact is troublesome for
methodology consultants, salvation authors (myself
being an exception:-) and other confidence trick mak-
ers. But like in the fashion business, this is solved by
change the wrapping and reintroduce old things as
being the latest inventions, that are urgently needed by
everybody.

People too young in the development business was maybe not there the last time
these things were in fashion. And managers may not have time enough to pene-
trate and disclose all “package” tricks. Like fashion consumers, people in general
fear the risk to be regarded uninformed and old fashioned.

When these arguments arise from consultant sales persons or by improvement
proposals from inferiors, it easily happens that it is decided to acquire similar
things (but differently named and described) that might already be acquired and
even might be in place.

1.2.5 EXAMPLE: Ego people being change agents

Many persons love to start up new things, to be inventive persons, to get a lot of
attention and look busy, and to be hang-arounds to influential managers. They use
their charisma to sell in solutions to anyone in need for anything.

But after a while, when it gets harder to deliver and show
promised results, these persons pop up somewhere else in
the organisation with other newly started improvements. If
follow-up from management is poor, these persons are never
made responsible for what they promised but not delivered,
and can proceed to jump around.

Needless to say, this example is a disaster for improvement activities and the
organisation moral. Much more of this will be discussed in the chapter "Meta
CHAPTER 18 Improvement & Assessment", at page 251.

1.2.6 EXAMPLE: Sub optimization within local organizations

When organizations get that large, that everybody don’t meet each other face to
face any more, there will appear more and more individuals not being in contact
with each other. This is nothing wrong in itself, in a big company everybody can
not work together with everybody else.

Trousers can not be
designed in so many
different ways. But
the fashion business
succeeds, over and
over again, to sur-
prise us with yet new
trousers.

Charisma people
are very useful,
but never ap-
point them in ex-
pert positions.
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To still bring employees to share the company culture and
value chain, there is now an emerging need to work with
formal documentation and improvements on many
abstraction levels. As a consequence of this, it can often
be seen that groups internally works very efficient and
structured. But if looking on how these groups contribute
together for the company result, it might be very ineffi-
cient, or the groups might even destroy each others work
results.

The higher up in an organisation the bigger are the effects of problems and
rewards from efficient solutions. But in many companies this fact is not recog-
nized, and even the revers may occur. On low level there might be a dedicated
improvement work ongoing, but the higher up in the organisation, the more unin-
teresting managers get for improvements and an efficient way of working.

1.2.7 EXAMPLE: Scapegoats of a blame game

If crisis of any kind hits a development company, it is quite natural that everybody
tries to protect themselves, and managers tries to protect their organisations. One
way to protect yourself, if you can make believe the cause of the crisis are outside
of your own domains, is to declare that you and your organisation was only an
innocent victims. Often a company executive group get pressure from the boards
and owners, and must present drive and improvement programs to overcome the
crisis.

Altogether, there is a high desire to point out scapegoats in order to try to hide
own responsibility. And in the same pattern as common mobbing mechanisms, the
weakest parts of the company organisations is less dangerous to attack. 

Not seldom seen, is that executives point out the engi-
neering value chain to be the cause for the crisis. There
are examples, that even if the crisis obviously was
caused by outdated product portfolios delivered by
incompetent market organisations, it ends up with the
management declares that developers are working in
the wrong way.

A good way to eliminate such mismanagement, is to demand root cause analysis.
But the opposite is more common, it is easier and more controllable to point out a
weak scapegoat, than to launch a root cause analysis which may find skeleton in
anybody’s cupboard.

1.2.8 EXAMPLE: Products driven by engineers

Many product markets (even if being very technical products) are not different
from the fashion market. It is the price tag and the appearance of the product that
is most important, and the rest of the product characteristics must only reach
above a normal “hygiene standard”.

Even if a group per-
forms very well, it is
not thereby given
that it brings any
substantial value to
the organisation

The value chain and
people working with
the value chain, are
often targets when
searching for scape-
goats of a crisis.
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If a company is governed by mostly technical people,
the reverse might occur. Then the technical systems
within the cabinet get most important and heavily
improved but the outlook is kept as boring as forever.
User perceived quality may slip because feedback from
the market is ignored. A high return rate and warranty
cost is often the result.

A company may have a lot of market driven people and managers, but despite this
might still be engineering driven, because a strong channel might be missing to
convey market driven requirements into the centre of the engineering departments,
for more details about this see the chapter "Detail CHAPTER 6 Requirements", at
page 109.

1.2.9 EXAMPLE: Product structure being degenerated

Product structure and architecture are often the most misunderstood of all devel-
opment concepts. It is very strange, because for the house construction business
the architect is both important and well understood. In hardware development it is
fairly well understood, because the components are tangible and can be likened to
rooms in a house. 

But when coming to software, it might be totally impos-
sible to make analogies to rooms, flats, floors etc. A
software construction that has been uncontrolled
extended for long time, may have an architecture very
similar to a allotment-garden cottage. Small rooms has
been added to the house body every summer but the
body itself has never been reconstructed. This ends up
in a cottage with a large amount of rooms, nooks and
corners, but nowhere any continuous space for living.
More about understanding architecture will be discussed in the chapter "Detail
CHAPTER 7 Architectures", at page 151.

1.2.10 EXAMPLE: Impossible principles applied

To build a company on strong principles are generally a good sign, for example like
the successful companies Toyota and Ikea. But be aware of, that if wrong or
impossible principles are selected, then the damaged will be equally strong as the
success would have been.

A striking example on implying impossible principles is the
construction of the Swedish warship Wasa. Sweden was in
war with Poland, and needed better fire power in their navy.
Thus, there was a heavy force from the Swedish king to
equip the ships with as many cannons as possible. Conse-
quently the ship Wasa had too many cannons compared to
its size and ballast, but despite this the king ordered the
launch of the ship. After ten minutes in fine weather, the
ship capsized and sunk in 1628.

Engineer driven de-
velopment is often
carefully watched.
But to ensure it will
not happen is hard.

A software structure
might be as degener-
ated as an allotment-
garden cottage. A lot
of rooms, nooks and
corners, but no-
where to live.

What a competi-
tive edge it would
be for a company
which succeed to
“suspend gravita-
tion”. But what are
the chance ? 
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Another example is a company having big problems to handle their system, which
grew bigger and bigger for each day, resulting in uncontrollable organisations. The
system engineering department was not in control and was even seen to be
unneeded. However, a big improvement project was started and the upper man-
agement announced “the principle of de-coupling”, meaning that different parts of
the system should be developed separately from each other and handed over from
smaller organisations for integration and assembly.

The “only” annoying problem was that the architecture of the system was far from
being decoupled, and no sub-system interfaces were described, visualized or man-
aged. Few of the persons in the management understood, that if the system wasn’t
partitioned in parts, it was useless to partition the organisation. A lot of time,
energy and money was thrown away when to divide the company into decoupled
organisations, but without decouple the technical system parts from each other.
More of this will be addressed in the chapter "Detail CHAPTER 7 Architectures",
at page 151.

1.2.11 EXAMPLE: Artificial complexity being pushed

One of the best examples on this, even if far from the product development world,
is the old solar system model with the earth in the centre. The solar system model
showed the movement of all planets assuming that they were connected on
spheres that were rotating at different speed. But some observations were really
difficult to explain with this model. For example, it was not so seldom seen that a
planet moving over the sky, suddenly reversed its direction and retrograded for
some time, before reversing once again and proceeding in the original direction.
The more irregularities of planet movements that was observed, the more epicycle
spheres was put into the solar system model.

Complexity in this model was actually added by humans, and consequently most of
it disappeared when Copernicus released his model with the sun in centre (by the
way, a substantial paradigm shift).

In product development it is easy to end up with too
many “spheres” and everything gets more and more
impossible to understand. Every model builder is not as
brilliant as Copernicus, but the warning bell should be
ringing, when working models gradually gets too complex
to understand. It might be the consequence of a model
that has evolved beyond its initial simple context, and
must be replaced by a more well-reasoned one.

1.2.12 EXAMPLE: Intrinsic complexity being ignored

This is the opposite to the preceding example and might ring the warning bell as
well. Product development can be really complex, du to very complex products
that are being developed in shorter time that is possible (so to say).

One good example of this is when a system to be developed has varying lead times
in different architectural parts. For example, turn around time for making a new

Things should be
made as simple as
possible - but not
simpler.
 - Albert Einstein
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software release might take a couple of days, while making a new ASIC may take
some years to prepare.

If you neglect the different lead times for the software
and the ASIC, you never succeed to get requirement
management started in the right time for different archi-
tectural parts. That implies that different parts will not
be ready for integration at the same time, which implies
that some parts must wait for other parts to get ready.
Or that some parts must be used despite they are not yet

finalized. 

The point is, that if the complexity of different lead time is not taken care of in the
work model, the requirement management will never succeed.

1.2.13 EXAMPLE: Devils in the details being ignored

Of course it is important that top management are supporting improvement work,
but it might be dangerous to drive and organize everything strictly top-down.
Some nasty details can be as hard to overcome as a law of nature. An improvement
without experts checking in advance for devil’s details may come out to nothing.

A good example is when totally development lead time must
be shorten. That means to do the same things like before,
but on shorter time, which in turn often results in doing
more and more things in parallel. To understand that the syn-
chronisation between parallel work will still be possible in
practice, a critical path analysis must be performed on the
new parallelism to apply. 

At some point in trying shortening the lead time, it is not possible to further
increase the degree of parallelism, because some details of the devil sets the limit.
For example, it take some minimal time to get an ASIC (silicon chip) produced
after you have submitted all ASIC drawings and this time isn’t realistic to shorten
beyond a certain duration. For analyses of critical path it is essential to involve
experts of details, knowing the critical path and where unconditional limitations
sets in for each activity in the path.

1.3 Your way out of this

Above chapters describe symptoms when complex devel-
opment are deviating in wrong ways. It is very important
to diagnose such symptoms in an early stage, when it is
still easy and cheap to cure. But how to carry out this treat-
ment? This book give one clear answer to it - the develop-
ment organisation must better master their complexity
they face.

Again, things should
be made as simple
as possible - but not
simpler.
 - Albert Einstein

The saying “little
strokes fell great
oaks” might be
terrible decisive
in complex prod-
uct development.

This book do help
you out. (In this
book, important
statements are
shown like this)
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To learn about complexity is hard and there is certainly no short cuts. This book
intends to give you a palate of aspects on complexity, that can help you to discuss,
understand and come up with improvement proposals that really help.

(If you find this book being impolite when claiming that you need help, but in fact
you don’t, please instead review this book and send back your comments to the
author). 

This is not just an academic book that only enumerate all plausible facts of com-
plex development, but it is instead a book covering real experience and long time
learning. It contain a almost endless amount of examples from various relevant
development worlds. But this book doesn’t stop even there, it also put all these
examples into context of the whole lot, in order to capture and illustrate the com-
plexity behind. And that is in fact what you are in big need of, but seldom get from
other books. This book will take you underneath the skin of complex develop-
ment, and prevent you to fall into any of the pit-falls presented above. Good luck!
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Term In this book Out there
Architecture How the structure of an artefact is assembled by its parts, 

including immaterial artefacts like software.
About the same

Artefact Something developed or produced by humans, including 
immaterial artefacts

About the same

Black-box (BB) Demarcation which not disclose anything of its internal con-
tent, but only showing properties of its surface, and behaviour 
via its interface. Properties and behaviour are described by 
requirements.

About the same

Component A sub-system being explicitly developed or extracted from a 
finished system, in the way that it can be easily understood and 
reused without significant rework. Electronic components are 
typical, even if they often have small granularity.

About the same

Decompose To split up an architecture black-box into its white-box, con-
taining design elements (some of which can be underlying 
black-boxes).

About the same

Description Information about an artefact. Always be careful when referred 
to an artefact, is it the artefact itself or is it its description being 
referred.

About the same

Design (noun) See design element.
Design (verb) Transform black-box requirements, to design elements in 

resulting white-box.
Rather similar

Design element Anything showing up when decomposing a black-box, e.g. 
underlying black-boxes, electronics, software commands etc. 
Design elements can be developed and finished without a new 
layer of formal requirements.

Many definitions

Development Translate an product idea (satisfying a market demand), into 
descriptions and prototypes, making a production possible. Be 
aware, to not mix production and development together.

About the same

Formal Comply to concepts that are shared by colleagues. More vague
Granularity Size of components (compared to size of assembled system). About the same
Interface Interactions with a system (or sub-system) are through its 

interfaces. If the system (or sub-system) is judged a black-box, 
the interface requirements must be described and managed.

About the same

Life cycle status Regarding a named artefact to only change maturity states, dur-
ing its life from birth to death. The life cycle status reflecting 
the maturity might be stated after the name.

About the same

Line (manage-
ment)

The static and most often hierarchal structure of managers to 
lead a company.

About the same

Managed infor-
mation

Information is said to be managed, if it is uniquely identifiable, 
documented, obeyed and updated to always reflect the reality.

About the same

Module A sub-system without clear interfaces to its system. It can have 
a explicit name, but it is not easy to understand how it interacts 
with the system or how it is demarcated from the system.

Unclear distinc-
tion between 
module and 
component.

Object A self-contained and autonomy artefact. Close in its meaning 
to a small black-box.

About the same

Product A product is an artefact, created by somebody, from raw mate-
rials, to finished goods, for a market, to satisfy a need.

About the same

Glossary of terminology
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Product life cycle 
(PLC)

Time period, from a product idea is invoking a development, 
until the product is out-phased on the market, including even-
tual warranties.

About the same

Production To realise and multiply construction in volumes, based on 
developed construction documentation and prototypes. Be 
aware, to not mix production and development together.

About the same

Project A temporary structure in a company, to accomplish an 
assigned objective, and restricted by limited conditions (time, 
cost etc.).

About the same

Project leader The manager of a project, reporting to the project sponsor. About the same
Project office A line manager with a pool of project leaders About the same
Project sponsor A line manager ordering and controlling a project. About the same
Property Observable characteristics on the surface of a system (or sub-

system). If the system (or sub-system) is judged a black-box, 
the property requirements must be described and managed.

About the same

Refine Narrow in black-box requirements to match contained under-
lying black-boxes.

Can mean what-
ever

Requirements The behaviour and properties of an artefact. About the same
Specify Users capturing wishes from a system. Much more 

vague
Stakeholder Anybody that have interest in what are specified by require-

ments. A stakeholder might be an end user of a system to be 
developed, an orderer paying for the development, a verifier 
testing a developed system against its requirements, etc.

About the same

Sub-system Partition or part of the system to be developed. If a sub-system 
is judged complex, it should be considered as a black-box with 
requirements to describe it.

Much more 
vague

System The precise target demarcation for what is to be developed, no 
less, no more.

Much more 
vague

Value chain The factual way that work are performed in a company (to add 
value to it), regardless if it is understood or described.

More vague

White-box (WB) Demarcation of an amount of visible design elements. When 
opening a black-box it gets a white-box containing embedded 
black-boxes and other design elements. Be aware that a white-
box always has requirements, that has been updated to still sat-
isfy the chosen white-box design.

About the same

Term In this book Out there
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Architecture maintenance 209
ASIC 34

B
Big bang integration (example) 91
Bird’s Nest, Beijing 27
Board of directors 222

C
Chaos 26
Compatibility, backward 237, 238
Compatibility, forward 237
Complexity, artificial 33
Complexity, development 30
Complexity, growing 264
Complexity, high 25
Complexity, intrinsic 33
Complexity, low 24
Complexity, mitigation 26
Complexity, multiplied levels 24
Complexity, short about 26
Complexity, transition from low to 

high 25
Computer program 65, 66
Cooking the main course (example) 232
Copernicus 33
Critical path 68, 99
Critical path analysis 34
Customer 66

D
De-coupling 33
Details, devil in 34
Development, bridges 24
Development, conclusion of series of 

examples 98
Development, different lead time 232
Development, different lead times 

(example) 233, 235
Development, double staffing 87
Development, extending all modules 240
Development, extending 

continuously 240

Development, extending features 
(example) 241

Development, extending modules and 
features (example) 241

Development, extending sw & hw 
(example) 238

Development, feature parallel mania 
(example) 93

Development, four features 
(example) 96, 97

Development, houses 24
Development, ignoring system 

(example) 236
Development, in disorder 27
Development, iterative (example) 87
Development, iterative decomposition 

(example) 91
Development, late requirements 

(example) 84
Development, moderate parallelism 

(example) 83
Development, parallel mania 

(example) 81
Development, products 24
Development, prototyping 86
Development, single feature 

(example) 93
Development, sky scrapes 24
Development, system decomposition 

(example) 89
Development, two feature (example) 94
Development, two feature on isolated 

branches (example) 95

E
Ego people 30
Entrepreneurship 264

F
Finished goods 38
Flow of activities 65, 69
Flow, executable 65
Flow, support 67
Forum 221
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G
Gnosjö area 264

H
Hygiene standard 31

I
IKEA 38
Immaterial asset 64
Improvement campaigns 28
Interfaces 33

L
Lead time 34, 99
Leading group 222
Life cycle status 73
Line accountability 221
Line organisation 64

M
Management, acting grandiose 29
Management, bad conscience 29
Management, keeping pease 29
Management, line 207
Management, not accountable 28
Management, not interesting 29
Management, not proactively 29
Managing director 222
Man-time (actual) 80
Man-time (effective) 80

N
Nail with a cudgel 24, 26
N-body problem 26
Newton Isaac 26

O
Organisation structure 208
Organisation versus architecture 

(example) 220
Organisation, a kind of architecture 208
Organisation, large size 211, 219
Organisation, middle size 210
Organisation, small size 210
Organisation, uncontrollable 33
Organisation, very large size 221
Organization, line 208
Owner 221

P
Pantheon 24

Paradigm shift 25, 26, 27, 33
Parallel work 34
Prefabricate 102
Principles, impossible 32
Producer 76
Product 66
Product development 33, 37, 38, 40
Product life cycle 38
Product, aspects of 38
Product, driven by engineers 31
Product, in disorder 27
Product, structure 32
Production description 64
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Products, profitable quality 25
Prototype 64

R
Raw material 38
Requirement management 34
Requirements, late (example 

revisited) 103
Result orientation 72
Results 69
Roles 76
Root cause analysis 24, 29

S
Sandahl Christer, the author 264
Scaling up 25, 26, 27
Scaling up line organisations 210
Software 24, 32, 34
Solar system 33
State machine 75
Structure of parts 76, 110, 130, 131, 135, 

140, 152, 153, 208
Supplier 66
System engineering 33

T
Time to market 40
Top-down 34

V
Value added 67
Value added tax (VAT) 67
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Value chain overlaying line 
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Value chain results 69
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(example) 69
Value chain, activity flow (example) 68
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W
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Christer Sandahl has for over 40 years been liv-
ing in the engineering world. Beginning with
photo and chemistry in his teenage, over to
electrical engineering in university, and into
computer design as professional.

In his early working life Christer has all by him-
self several times constructed large computer
systems, both hardware and software.

When computers got large and complex, he
has for long periods managed software groups
in successful local companies as well as in large
world wide combines, such as Sony Ericsson,
and Axis Communications.

Christer has grown up in the “Gnosjö area” of
Sweden, the origin of entrepreneurship. His
family has a large transportation company, he
and his brother has quality wine production in
Hungary, and Christer has of cause taken on
this way of life in his engineering profession.

- Why is malfunctions common in computer products?
- Why is it frustrating to operate our everyday products?
- Why do most development projects get out of hand?

It become more and more evident that behind those prob-
lems, is mainly the ever growing complexity, which is not 
enough understood and mastered.

If deciding to master complexity, there are no single easy 
cures. You need generalists, you need specialists, but most 
essential, you need people that are both, to establish effi-
cient bridging between all different areas of development.

This book describes all those concrete elements of complex 
product development, and ties them together to a uniform 
conception. With you in mind, all descriptions comes with 
plenty of real examples and illustrations, from prestigious 
board rooms down to the plain floor.

Don’t ever tell me you didn’t get a chance.




