
Complex Product
Development

and its
Management

by Christer Sandahl

2 Complex Product Development and its Management by Christer Sandahl

To be printed and marketed by AuthorHouse

Revision of 23 May 2011

All rights reserved.
Christer Sandahl

This Book

Dedicated to my dear family,
for taking proper care of me,
when I fade into book coma.

3

Overall CHAPTER 1 Warning Bells 23

Overall CHAPTER 2 Product Development Overview 37

Overall CHAPTER 3 Value Chain 63

Overall CHAPTER 4 Optimise Concurrency 77

Overall CHAPTER 5 Portfolio & platform 105

Detail CHAPTER 6 Requirements 109

Detail CHAPTER 7 Architectures 151

Detail CHAPTER 8 Finalize design 195

Detail CHAPTER 9 Integration 199

Detail CHAPTER 10 Verification and Validation 203

Unite CHAPTER 11 Line Management 207

Unite CHAPTER 12 Interfering Operations 225

Unite CHAPTER 13 Balancing Players 227

Unite CHAPTER 14 Configuration control 231

Meta CHAPTER 15 Information Management 243

Meta CHAPTER 16 Quality System 245

Meta CHAPTER 17 Process & methodology 247

Meta CHAPTER 18 Improvement & Assessment 251

Overview Table of Content

Overview Table of Contents

4 Complex Product Development and its Management by Christer Sandahl

5

Overall CHAPTER 1 Warning Bells 23

1.1 What has gone wrong ? 24
1.1.1 Success from the low complexity world 24
1.1.2 Success from the high complexity world 25
1.1.3 Transition from low complexity to high 25
1.1.4 Is there any trick with scaling up ? 25
1.1.5 Short about complexity 26

1.2 When should you hear the warning bell ? 27
1.2.1 EXAMPLE: Unrealistic campaigns continually
restarted 28
1.2.2 EXAMPLE: Management not being accountable 28
1.2.3 EXAMPLE: Root cause analysis being suppressed 29
1.2.4 EXAMPLE: New wrapping with same content 30
1.2.5 EXAMPLE: Ego people being change agents 30
1.2.6 EXAMPLE: Sub optimization within local
organizations 30
1.2.7 EXAMPLE: Scapegoats of a blame game 31
1.2.8 EXAMPLE: Products driven by engineers 31
1.2.9 EXAMPLE: Product structure being degenerated 32
1.2.10 EXAMPLE: Impossible principles applied 32
1.2.11 EXAMPLE: Artificial complexity being pushed 33
1.2.12 EXAMPLE: Intrinsic complexity being ignored 33
1.2.13 EXAMPLE: Devils in the details being ignored 34

1.3 Your way out of this 34

Overall CHAPTER 2 Product Development Overview 37

2.1 The product 38
2.1.1 About products 38
2.1.2 EXAMPLE: chairs development 38

2.2 Product life cycle (PLC) 38
2.2.1 About product life cycle 38
2.2.2 EXAMPLE: chairs life cycle 39

2.3 Product development (PD) 40
2.3.1 About product development 40
2.3.2 EXAMPLE: chairs product development 40

Detailed Table of Content

Overview Table of Contents

6 Complex Product Development and its Management by Christer Sandahl

2.4 Strategic study 41
2.4.1 About road maps 41
2.4.2 EXAMPLE: chairs strategic study 41

2.5 Concept study 42
2.5.1 About concept studies 42
2.5.2 EXAMPLE: chairs concept brief 42

2.6 Portfolio management 43
2.6.1 About product portfolio management 43
2.6.2 EXAMPLE: chairs portfolio management 43
2.6.3 About reuse planning 44
2.6.4 EXAMPLE: chairs reuse planning 44

2.7 Business study 44
2.7.1 About business cases 44
2.7.2 EXAMPLE: chairs business case 45
2.7.3 About business gates (BG) 45
2.7.4 EXAMPLE: business gate number 1 (BG1) 45

2.8 Prototyping and customer feedback 46
2.8.1 About prototyping 46
2.8.2 EXAMPLE: chairs prototyping 46
2.8.3 About customer requirements 46
2.8.4 EXAMPLE: customer feedback 46

2.9 Requirement management 47
2.9.1 About requirement management 47
2.9.2 EXAMPLE: chairs requirement management 47
2.9.3 Test cases 48
2.9.4 EXAMPLE: chairs test cases 48

2.10 Designing a system 49
2.10.1 About architectures 49
2.10.2 EXAMPLE: chairs architecture 50
2.10.3 System decomposition 50
2.10.4 EXAMPLE: chairs component list 50
2.10.5 Interface descriptions 51
2.10.6 EXAMPLE: chairs component interface 51

2.11 Detailing 52
2.11.1 EXAMPLE: chairs detailing 53

2.12 Product propositions and promotion 53
2.12.1 EXAMPLE: chairs product planning 53
2.12.2 About promotion campaign 54
2.12.3 EXAMPLE: chairs promotion campaign 54
2.12.4 EXAMPLE: business gate number 2 (BG2) 54

2.13 Material supply 55

Under the Skin of Complex Product Development by Christer Sandahl 7

Overview Table of Contents

2.13.1 About material and supply 55
2.13.2 About bill of material 55
2.13.3 Cost down activities 55
2.13.4 EXAMPLE: chair material supply 56

2.14 Integration, verification and validation 57
2.14.1 About integration 57
2.14.2 EXAMPLE: chairs integration 57
2.14.3 EXAMPLE: chairs verification 57
2.14.4 About validation and β-test 57
2.14.5 EXAMPLE: chairs validation 57
2.14.6 EXAMPLE: Business gate 3 (BG3) 58

2.15 Ramp up and Launch 58
2.15.1 About ramp up and launch 58
2.15.2 EXAMPLE: chairs ramp up and market launch 58

2.16 The motor chairs 58
2.16.1 Organising the new development 59
2.16.2 Modules with different lead times 60
2.16.3 Extended architecture 61

Overall CHAPTER 3 Value Chain 63

3.1 General about value chain 64
3.1.1 EXAMPLE: value chains 64
3.1.2 Value chain appearance 64

3.2 Value chain basics 65
3.2.1 Short about flows 65
3.2.2 The value chain is a kind of executable flow 65
3.2.3 Total value chain 66
3.2.4 Value added 67

3.3 Chair development value chain 67
3.3.1 EXAMPLE: chair development basic value chain 67
3.3.2 EXAMPLE: chair development activity flow 68

3.4 Results 69
3.4.1 Short about results 69
3.4.2 EXAMPLE: chair development activities including
results 69

3.5 Result orientation 72
3.5.1 EXAMPLE: chair development result dependences 72
3.5.2 Life cycle status of results 73

3.6 Building blocks in value chains 73

Overview Table of Contents

8 Complex Product Development and its Management by Christer Sandahl

3.6.1 Activity-activity linkage 73
3.6.2 Activity-result alteration 74
3.6.3 Result-result dependencies 75
3.6.4 State machine 75
3.6.5 Executor and producer roles 76

Overall CHAPTER 4 Optimise Concurrency 77

4.1 Sequential Waterfall 78

4.2 Flow Parallelism 78
4.2.1 Development example series of parallel patterns 79
4.2.2 Layout of the following series of examples 79

4.3 Patterns of basic development 80
4.3.1 EXAMPLE: basic waterfall 81
4.3.2 EXAMPLE: trying parallel mania 81
4.3.3 EXAMPLE: trying moderate parallelism 83
4.3.4 Patterns of Parallelism 84
4.3.5 EXAMPLE: trying late requirements 84
4.3.6 EXAMPLE: prototyping 86
4.3.7 EXAMPLE: double staffing 87
4.3.8 EXAMPLE: iterative development 87
4.3.9 Patterns of iterative development 89
4.3.10 EXAMPLE: system decomposition 89
4.3.11 Generic layered V-model 90
4.3.12 EXAMPLE: iterative decomposition 91
4.3.13 EXAMPLE: big bang integration of system modules 91

4.4 Patterns of feature development 92
4.4.1 EXAMPLE: one single feature extension 93
4.4.2 EXAMPLE: feature parallel mania 93
4.4.3 EXAMPLE: two feature extension 94
4.4.4 EXAMPLE: two feature extension on isolated
branches 95
4.4.5 EXAMPLE: four features extension 96
4.4.6 EXAMPLE: four features extending with one single system
verification 97
4.4.7 EXAMPLE: four features extending with automated system
verification 97

4.5 Conclusion from series of examples 98

4.6 Critical path 99
4.6.1 About lead time 99
4.6.2 EXAMPLE: New Years rave. 100

Under the Skin of Complex Product Development by Christer Sandahl 9

Overview Table of Contents

4.6.3 Counting backwards to identify flow ? 101
4.6.4 EXAMPLE: restaurant management 101
4.6.5 EXAMPLE: prefabricates in restaurants 102
4.6.6 EXAMPLE: late requirements revisited 103

Overall CHAPTER 5 Portfolio & platform 105

5.1 Forerunner or follower 106
5.1.1 Fashion analogy 106
5.1.2 Time to market 106
5.1.3 Hygiene factor versus differentiator 106
5.1.4 Make/buy analysis 106

5.2 Product paradigm shift 106
5.2.1 EXAMPLE: mechanical versus electronic calculator 106
5.2.2 EXAMPLE: graphical interface in computer and
telephone 106

5.3 Portfolio 106
5.3.1 Diversity of products 107
5.3.2 Cannibalism 107

5.4 Platforms 107
5.4.1 Platform basics 107
5.4.2 Building all products in parallel 107
5.4.3 Implementing platform products gradually 107
5.4.4 Most advanced product drive the platform 107

5.5 Reuse 107
5.5.1 Ad hoc 107
5.5.2 On opportunity 107
5.5.3 Planned in advance 107
5.5.4 Granularity of reuse 107

5.6 Product line (Platform) 108
5.6.1 Product portfolio 108
5.6.2 Variability versus flexibility 108

Detail CHAPTER 6 Requirements 109

6.1 Requirements 110
6.1.1 Purpose 110
6.1.2 Restrictions 111
6.1.3 System hierarchies 111
6.1.4 Requirements connection to architecture and vice versa 111

Overview Table of Contents

10 Complex Product Development and its Management by Christer Sandahl

6.1.5 Requirements traceable to each other 111

6.2 Constitute restrictions 112
6.2.1 Value chain 112
6.2.2 Capture environment restrictions 112
6.2.3 EXAMPLE Capture environment and house
regulations 112
6.2.4 Environment design make/buy analysis 113
6.2.5 EXAMPLE: Environment design make/buy
analysis 113
6.2.6 Hand over to "Constitute environment" 114

6.3 Refine restrictions and specify top-system 114
6.3.1 Top-system value chain 114
6.3.2 Reconcile restrictions against environment architecture 115
6.3.3 EXAMPLE: Reconcile house regulations against
environment 115
6.3.4 Capture top-system requirements 116
6.3.5 EXAMPLE: Capture house requirements 116
6.3.6 Prioritize and consolidate top-system requirements 118
6.3.7 EXAMPLE: Prioritize and consolidate house
requirements 118
6.3.8 Top-system design make/buy analysis 118
6.3.9 EXAMPLE: House design make/buy analysis 120
6.3.10 Hand over to "Decompose top-system and design its
elements" 120

6.4 Refine top-system and specify mid-systems 121
6.4.1 Mid-system value chain 121
6.4.2 Reconcile top-system requirements against architecture 121
6.4.3 EXAMPLE: Reconcile house requirements against
architecture 122
6.4.4 Capture mid-systems requirements 122
6.4.5 EXAMPLE: Capture kitchen requirements 122
6.4.6 Prioritize mid-system requirements 124
6.4.7 EXAMPLE: Prioritize room requirements 124
6.4.8 Mid-system design make/buy analysis 124
6.4.9 EXAMPLE: Room design make/buy analysis 124
6.4.10 Hand over to "Decompose mid-systems and design their
elements" 125

6.5 Refine mid-systems and specify bottom-
systems 125

6.5.1 Bottom-system value chain 125
6.5.2 Reconcile mid-system requirements against architecture 125
6.5.3 EXAMPLE: Reconcile rooms requirements against
architecture 125

Under the Skin of Complex Product Development by Christer Sandahl 11

Overview Table of Contents

6.5.4 Capture bottom-systems requirements 126
6.5.5 EXAMPLE: Capture fixtures requirements 126
6.5.6 Prioritize bottom-system requirements 128
6.5.7 EXAMPLE: Prioritize machinery fixtures
requirements 128
6.5.8 Bottom-system design make/buy analysis 128
6.5.9 EXAMPLE: Machinery fixtures design make/buy
analysis 128
6.5.10 Hand over to "Decompose bottom-systems and design their
elements" 128

6.6 Refine bottom-systems 129
6.6.1 Finalising value chain 129
6.6.2 Reconcile bottom-system requirements against
architecture 129
6.6.3 EXAMPLE: Reconcile fixtures requirements against
architecture 129
6.6.4 End of refine and decompose zig-zag 129

6.7 Static and dynamic requirements 130
6.7.1 Static requirements 130
6.7.2 Dynamic stimulus-response requirements 131
6.7.3 EXAMPLE: Multiplication table toy 131

6.8 Use cases 133
6.8.1 Dynamic textual use case requirements 133
6.8.2 EXAMPLE: Specify the Windows calculator 133
6.8.3 EXAMPLE: Calculator dual operand use case 134

6.9 Function requirements 134
6.9.1 Dynamic function requirements 134
6.9.2 EXAMPLE: Egg function 136

6.10 Scenarios requirements 136
6.10.1 EXAMPLE: Breakfast scenario 137
6.10.2 State machines 138
6.10.3 EXAMPLE Scenario state machine requirements 139
6.10.4 Functions penetrating architecture 139
6.10.5 EXAMPLE: Egg function penetrating architecture 140
6.10.6 Scenarios penetrating architectures 142
6.10.7 EXAMPLE: Calculator normal case scenario
requirements 142
6.10.8 EXAMPLE: How many states ? 144
6.10.9 EXAMPLE Calculator full case requirements 144
6.11.1 EXAMPLE: Calculator requirements test case 147

6.13 Road maps 148

Overview Table of Contents

12 Complex Product Development and its Management by Christer Sandahl

6.15 Frequently asked questions about
requirements 148

6.15.1 Why black-boxes ? 148
6.15.2 EXAMPLE: Why not early open the house black-box
? 149
6.15.3 Isn't it too expensive to refine and specify requirements
? 149
6.15.4 EXAMPLE: Life cycle cost of an house 149
6.15.5 Isn't it delaying the development to refine and specify
requirements ? 149
6.15.6 Who are requirement stakeholders ? 149
6.15.7 How is a durable prioritization made 150
6.15.8 Why not ask the developers to specify during developing
? 150
6.15.9 Traceability of requirements 150
6.15.10 Why top-down, and not bottom-up refinement ? 150
6.15.11 Is it smart to specify what a system should not do ? 150
6.15.12 Requirements on textual requirements 150

Detail CHAPTER 7 Architectures 151

7.1.1 Purpose 152
7.1.2 Black-boxes 152
7.1.3 White-boxes 153
7.1.4 Systems and architecture hierarchies 153
7.1.5 Views of architectures 153

7.2 Constitute environment 154
7.2.1 Value chain 154
7.2.2 Restrictions impact on environment design 154
7.2.3 EXAMPLE: House regulations impact on its environment
design 155
7.2.4 Consolidate environment architecture 156
7.2.5 EXAMPLE: Environment architecture résumé 156
7.2.6 Identifying black-box in environment architecture
résumé 157
7.2.7 EXAMPLE: Environment logical architecture
drawing 158
7.2.8 Layout environment white-box 158
7.2.9 EXAMPLE: Environment physical architecture
layout 159
7.2.10 Hand over to "Refine restrictions and specify top-
system" 159

Under the Skin of Complex Product Development by Christer Sandahl 13

Overview Table of Contents

7.3 Decompose top-system and design its
elements 160

7.3.1 Value chain 160
7.3.2 Top-system requirements impact on top-system design 160
7.3.3 EXAMPLE: House requirements impact on top-system
design 161
7.3.4 Consolidate top-system design 162
7.3.5 EXAMPLE: House architecture résumé 163
7.3.6 Identify black-boxes in top-system architecture résumé 165
7.3.7 EXAMPLE: House logical architecture drawing 165
7.3.8 Layout top-system white-box architecture 166
7.3.9 EXAMPLE: House physical architecture layout 167
7.3.10 Hand over to "Refine top-system and specify mid-
systems" 167

7.4 Decompose mid-systems and design their
elements 168

7.4.1 Value chain 168
7.4.2 Mid-system requirements impact on mid-system design 168
7.4.3 EXAMPLE: Room requirements impact on room
design 169
7.4.4 Consolidate mid-system architecture 170
7.4.5 EXAMPLE: Kitchen architecture résumé 171
7.4.6 Identifying black-boxes in mid-system architecture
résumé 171
7.4.7 EXAMPLE: Kitchen logical architecture drawing 171
7.4.8 Layout mid-system white-box architecture 172
7.4.9 EXAMPLE: Kitchen physical architecture layout 172
7.4.10 Hand over to "Refine mid-systems and specify bottom-
systems" 173

7.5 Decompose bottom-systems and design their
elements 174

7.5.1 Value chain 174
7.5.2 Bottom-system requirements impact on bottom-system
design 175
7.5.3 EXAMPLE: Machinery fixtures requirements impact on
fixtures design 175
7.5.4 Consolidate bottom-system architecture 177
7.5.5 EXAMPLE: Machinery fixtures architecture résumé 177
7.5.6 Identifying black-boxes in bottom-system architecture
résumé 178
7.5.7 EXAMPLE: Logic machinery fixtures architecture 178
7.5.8 Layout bottom-systems white-box architecture 179
7.5.9 EXAMPLE: Fixtures physical architecture layout 179

Overview Table of Contents

14 Complex Product Development and its Management by Christer Sandahl

7.5.10 Hand over to "Refine bottom-systems" 180

7.6 The two-sided zig-zag coin 181
7.6.1 EXAMPLE: House refining and decomposition zig-
zag 181
7.6.2 General refining and decomposition zig-zag 182

7.7 Generalizing the value chain 183
7.7.1 EXAMPLE: What the house example didn’t tell 183
7.7.2 Generic requirement and architecture value chain 183

7.8 More architectures 184
7.8.1 EXAMPLE: Multiplication table toy 184

7.9 Requirements and architectures relationship 186
7.9.1 Awkward relationship types 186
7.9.2 Module coupling 186
7.9.3 Module cohesion (or strength) 186
7.9.4 EXAMPLE: professions 186

7.10 Architecture hierarchies 186
7.10.1 Top-down versus bottom-up 186
7.10.2 What is great with black-boxes and interfaces 187
7.10.3 How to find the black-boxes 187
7.10.4 What decides the size of a black box 187
7.10.5 When to specify properties 187
7.10.6 Different decomposition depth 187
7.10.7 EXAMPLE: House logical box hierarchy 187

7.11 The use of black-boxes 189
7.11.1 Finding black-boxes 189
7.11.2 Aggregated properties and their summarization 189
7.11.3 Bill of material (aggregated price) 189
7.11.4 Decompose for reuse 189
7.11.5 Partition and aggregation 189

7.12 Large and complex architectures 189
7.12.1 Very different boxes inside each other 189
7.12.2 EXAMPLE: Complete motor chair architecture 190

7.13 Architecture types 191
7.13.1 Principles 191
7.13.2 EXAMPLE: OSI model 191
7.13.3 EXAMPLE: mobile phone 191

7.14 Open versus embedded 191
7.14.1 Extend before compile time 191
7.14.2 Extend before link time 191
7.14.3 Extend at run time 191
7.14.4 Prepare for specialization 191

Under the Skin of Complex Product Development by Christer Sandahl 15

Overview Table of Contents

7.14.5 EXAMPLE: Microsoft windows 191

7.15 Transforming requirements to architecture 192
7.15.1 Heuristic rather than deterministic 192
7.15.2 Iteration process 192

7.16 Decomposition to Sub-systems 192
7.16.1 Principle 192
7.16.2 Practical aspects 192

7.17 Modularization 192
7.17.1 Levels according to Myers 1975 192

7.18 Components 192

7.19 Maintenance cost reduction 192

7.20 Property performance 192

7.21 Atom architecture level 193

7.22 Degeneration 193
7.22.1 Extend a shanty town in width 193
7.22.2 Extend a shanty town in height 193

7.23 Cost, quality, projecting estimations 193

Detail CHAPTER 8 Finalize design 195

8.1 About finalizing design 196

8.2 Finalize the house 196

8.3 Finalizing the multiplication table tool 196
8.3.1 By gate network 196

8.4 Difference between sw and hw 196
8.4.1 Visibility 196
8.4.2 Margin cost for an extension 196
8.4.3 Development versus production cost 196

8.5 Finalizing the multiplication table tool 196
8.5.1 Development environment 196
8.5.2 By single chip computer 196

8.6 Finalizing the calculator 196
8.6.1 By single chip computer 196
8.6.2 Interrupt 196
8.6.3 Real time processes 196
8.6.4 Operating system 197
8.6.5 By an application 197

8.7 Experimental Prototypes 197

Overview Table of Contents

16 Complex Product Development and its Management by Christer Sandahl

8.8 Software languages 197
8.8.1 Machine 197
8.8.2 Assembler 197
8.8.3 Structured 197
8.8.4 Object oriented 197
8.8.5 Code generators 197

8.9 Software design elements 197
8.9.1 Interrupt 197
8.9.2 Control 197
8.9.3 Drivers 198
8.9.4 Protocols 198
8.9.5 Applications 198
8.9.6 User Interface 198

8.10 Managing software size 198
8.10.1 Head full 198

Detail CHAPTER 9 Integration 199

9.1 Planning 200
9.1.1 Integration from hardware and upwards 200
9.1.2 Counting backwards 200
9.1.3 Integration driven development 200
9.1.4 Efficient integration 200

9.2 Integration Prototypes 200
9.2.1 To integrate step wise 200
9.2.2 Anatomy 200
9.2.3 Feature principle 200
9.2.4 Incremental development 200

9.3 Revision control and branching 200
9.3.1 Principles 200
9.3.2 Sequential flow with no overlap 200
9.3.3 Implementation overlap bug corrections 200
9.3.4 Implementation partly overlap system test 201
9.3.5 Implementation overlap whole system test 201
9.3.6 Continuous implementation overlap 201
9.3.7 Many parts for revision control 201
9.3.8 Layered architecture revision control 201

9.4 Compatibility 201
9.4.1 Principle 201
9.4.2 Backward 201

9.5 Working against a community 201

Under the Skin of Complex Product Development by Christer Sandahl 17

Overview Table of Contents

9.5.1 Time to market 201
9.5.2 Proprietary implementations 201

Detail CHAPTER 10 Verification and Validation 203

10.1 Attitudes to defects 204

10.2 Roles during test 204

10.3 Test Cases 204
10.3.1 Coverage 204
10.3.2 Traceability to requirements 204
10.3.3 Reference included in delivery 204
10.3.4 Defects leakage during test 204

10.4 Component and system test 204
10.4.1 Value chain 204

10.5 Regression test 204

10.6 Acceptance criteria 205

10.7 Automatization 205
10.7.1 Design is vital 205

10.8 Involve customers 205

Unite CHAPTER 11 Line Management 207

11.1 Line Organization Basics 208
11.1.1 Short about organisation structure 208
11.1.2 The line organisation is a kind of architecture 208
11.1.3 EXAMPLE: similarities between architectures 208
11.1.4 Maintaining the architecture 209

11.2 Scaling up line organisations 210
11.2.1 Small size team 210
11.2.2 Middle size firm 210
11.2.3 Large size company 211

11.3 Overlaying value chain on line organisation 212
11.3.1 Conservation of the value chain 212
11.3.2 Different overlay possibilities 213
11.3.3 “Work along” oriented work force distribution 213
11.3.4 Chair example of “work along” line organisation 214
11.3.5 “Work across” oriented work force distribution 216
11.3.6 EXAMPLE: “work across” oriented work force
distribution 216

Overview Table of Contents

18 Complex Product Development and its Management by Christer Sandahl

11.3.7 Mix between work along and work across 217

11.4 Large size enterprise 219
11.4.1 Engineering line organisation versus system
architecture 219
11.4.2 EXAMPLE: engineering line organisation related to system
architecture 220
11.4.3 EXAMPLE: motor chair development enterprise 221

11.5 Line accountability by ownership 221
11.5.1 Owner concept 221
11.5.2 Control a company 222
11.5.3 Management accountability 222
11.5.4 Value chain ownership 223
11.5.5 Work environment 224
11.5.6 Equipment and tools ownership 224

Unite CHAPTER 12 Interfering Operations 225

12.1 Concept 226

12.2 Definition of a project 226

12.3 Requests and Allocation 226

12.4 Follow-up and reporting 226

12.5 Project office 226

12.6 Multiproject setup 226

12.7 Checkpoints in development flow 226
12.7.1 Definition 226
12.7.2 EXAMPLE: milestone 226

Unite CHAPTER 13 Balancing Players 227

13.1 Conflicting Parameters 228
13.1.1 Lead Time 228
13.1.2 Quality 228
13.1.3 Cost of development 228
13.1.4 Cost of product 228
13.1.5 Delivery time 228
13.1.6 Other 228

13.2 Balanced Scorecards 228

13.3 EXAMPLE: Project expectations
overdetermined 228

Under the Skin of Complex Product Development by Christer Sandahl 19

Overview Table of Contents

13.4 EXAMPLE: Overloading creates
underachievement 228

13.5 Interaction between Project and Line 229
13.5.1 Matrix organization 229
13.5.2 EXAMPLE: described line and project 229
13.5.3 Learning from projects, improving the line 229

13.6 Gates in development flow 229
13.6.1 Definition 229
13.6.2 EXAMPLE: tollgate 229

Unite CHAPTER 14 Configuration control 231

14.1 Different lead time development flow 232
14.1.1 EXAMPLE: cooking the main course 232
14.1.2 Abbreviations 232
14.1.3 EXAMPLE: motor chair development with three different
lead times. 233
14.1.4 Generic V-model for up-front system management 234
14.1.5 EXAMPLE: recurrent development at different lead
times 235
14.1.6 V-model for recurrent development 236
14.1.7 EXAMPLE: ignoring system engineering 236

14.2 Backward and Forward compatibility 237
14.2.1 EXAMPLE: backward compatibility 238
14.2.2 EXAMPLE: extending both software and hardware 238
14.2.3 EXAMPLE: extending all three modules 240
14.2.4 EXAMPLE: continuation of extending modules 240

14.3 Feature driven structures of patterns 241
14.3.1 EXAMPLE: different lead time feature development 241
14.3.2 EXAMPLE: combination of module and feature
development 241

Meta CHAPTER 15 Information Management 243

15.1 Abstraction Levels 244
15.1.1 Meta Level 244
15.1.2 Description Level 244
15.1.3 Reality 244

15.2 Availability versus security 244

15.3 Information Classification 244

Overview Table of Contents

20 Complex Product Development and its Management by Christer Sandahl

15.3.1 Requirements 244
15.3.2 Attributes 244
15.3.3 Architecture 244
15.3.4 Interaction 244
15.3.5 Governance 244

15.4 Life Cycle Status 244

15.5 Revision Control 244

15.6 Tools 244
15.6.1 Web 244

Meta CHAPTER 16 Quality System 245

16.1 Nature of Quality 246

16.2 Separation of Quality 246

16.3 Quality Shortage Sources 246

16.4 Chain of quality links 246

16.5 EXAMPLE: Wine Quality 246

16.6 EXAMPLE: Vandal Links 246

16.7 Measurements 246

16.8 Lessons Learned and Follow-up 246

Meta CHAPTER 17 Process & methodology 247

17.1 Process elements 248
17.1.1 Strategies 248
17.1.2 Governance 248
17.1.3 Workflow 248
17.1.4 Metrics 248

17.2 Benefit of an explicit process description 249

17.3 As is or to be 249

17.4 Views of a process 249

17.5 Partitioning of a process 249
17.5.1 Process architecture 249

17.6 Symbols of process descriptions 249

17.7 Results or activities 249

17.8 Process roles 249
17.8.1 Process owner 249

Under the Skin of Complex Product Development by Christer Sandahl 21

Overview Table of Contents

17.8.2 Process manager 249
17.8.3 Process support 249

17.9 Often too detailed 250

17.10 Nothing new under the sun 250

17.11 Ad Hoc 250

17.12 Prototyping 250

17.13 Waterfall 250
17.13.1 Clean Room 250

17.14 Iterative 250
17.14.1 Rational Universal Process 250
17.14.2 Agile concepts 250

17.15 Languages 250
17.15.1 Object oriented 250
17.15.2 UML 250
17.15.3 Chrilles “all in a picture” 250

17.16 Make your own combination 250

Meta CHAPTER 18 Improvement & Assessment 251

18.1 Improvement Planning 252
18.1.1 Step wise progress 252
18.1.2 Settle principles 252

18.2 Improvement Execution and Follow-up 252
18.2.1 Piloting 252

18.3 Change Project 252
18.3.1 Structure 252

18.4 Improvement anti-patterns 252
18.4.1 Ignore the process, then if problems arise, blame it 252
18.4.2 Throw the baby out with the bath water 252
18.4.3 Most excellence view is from Everest 252
18.4.4 Hunt scapegoats in place of analyse root causes 252
18.4.5 Preferring people’s facade to their outcome 252
18.4.6 Faking improvement by renaming and buzz wording 252
18.4.7 Management decisions are good recommendation 252
18.4.8 Processes inhibit creativity 252
18.4.9 Invalidate the law of gravitation 252
18.4.10 Let gurus save us by fixing their failures 253

18.5 Improvement Roles 253
18.5.1 Business Engineering 253

Overview Table of Contents

22 Complex Product Development and its Management by Christer Sandahl

18.5.2 Process Management 253
18.5.3 Process architecture 253

18.6 Organisational Cultures 253

18.7 ISO 9000 254

18.8 Baldrige 254

18.9 CMM 254

23

Overall CHAPTER 1 Warning Bells

“There is a lot of noise in the jungle,
 you must only be aware of the dangerous”

Why nailing with a cudgel ?

Overall CHAPTER 1: Warning Bells What has gone wrong ?

24 Complex Product Development and its Management by Christer Sandahl

1.1 What has gone wrong ?
In development organisations, it is not seldom seen that
people work backwards like nailing with a cudgel (primi-
tive club). Why ? You never get a carpenter to your
house with a cudgel to nail with, do you ?

Product development is nowadays in many respects an established and ordinary
business. For example, house and bridge development are several thousands years
of age. Other fields of product development are much younger, for example deal-
ing with software begun in the decade of 1960.

However, in all development fields, there are still products which fail to satisfy end
users. In some newer fields like software, trouble looks to be the standard, but in
other fields it is a bit better. And note, there is no conspiration behind this, no sup-
plier like to disappoint an end user. So what is the problem ?

If digging deeper in the development business in order to
find the root cause to why products fail to satisfy end
users, the most common reason seems to be that up-scaled
development introduce multiplied levels of complexity,
which in turn cause capability and competence problems
when organising development of these products.

Two thousand years ago, the Pantheon building in Rome was an ultimate complex
house construction on the very front of development knowledge at that time, but
should nowadays be a rather modest target for a mid sized construction company.
A complex building of today is a several hundred meter high sky scrape, which
need high tech solutions and sophisticated calculations for strength of construc-
tion materials, and several hundred of workers within many disciplines must be
well organized to make the building being raised. Complexity seem to have
increased over time, which implies that it is certainly possible to coop with larger
and larger complexity.

To analyse complexity a bit further, imagine the two diametrically opposed ends of
complexity, the “ordinary low end”, and the “utmost high end”.

1.1.1 Success from the low complexity world

Houses have been constructed with success for very long. A normally handy per-
son (with some drive) can, for example, extend his private house with some new
space. He may have to contact experts to sort out problems beyond his compe-
tency and hire specialists to help him build, but in the whole, this is not more com-
plex than he can lead the construction work and also take part in the
craftsmanship. The extended space will be of desired cost and quality, and will
function as planned. What possibly fails can afterwards most often be repaired at
modest costs.

This scene is true for many ordinary scaled business in our modern society. (Let be
that the house business recently face new complexity, when being target for a mas-

Why are skilled peo-
ple behaving like nail-
ing with a cudgel ?

Uncontrolled com-
plexity risk to
emerge, when a
business are get-
ting scaled up.

Complex Product Development and its Management by Christer Sandahl 25

Overall CHAPTER 1: Warning Bells What has gone wrong ?

sive energy saving requirements or when competition press prices for house build-
ing below what is reasonable for persistent quality.)

1.1.2 Success from the high complexity world

There might be air plane crashes and medicines with severe side effects, but to
travel by air or follow a doctor’s subscription is generally very safe. In these cases,
the high complexity of developing aircraft or medicine are undoubtedly handled
with success. Obviously, in these fields, the scaling up of complexity has worked
out very well, even if not totally clean from disasters.

1.1.3 Transition from low complexity to high

However, not all business and companies has manage to
make this transition in a proper way. Computers often
hang up and spoils large amount of work, consumer elec-
tronics fall into pieces and must be expensively repaired,
kitchen equipment barely keep together until warranties
are expired, etc.

In these unsuccessful cases there are of cause a lot of extenuating circumstances,
like everything must be developed in a rush because the market change quickly,
testing is not given enough time and is forwarded to the end users, money is spent
on commercials rather than development etc. And in the software discipline, typi-
cally one after another line of code is added, and the scale-up come very creeping
and invisible, and all of a sudden has ruined the structure of the system.

Many unsuccessful companies might argue, that it is not really their problem if
they fails to deliver satisfying complex products. Who hasn’t heard “the customer
simply gets what they pay for”. But most often an analysis would have showed,
that poor products costs more than they save for both producer and customer.
These products are often in the poor end of the quality scale, and in fact it would
have been more profitable to develop them better from the beginning (at least
when consider the full life cycle of the product).

1.1.4 Is there any trick with scaling up ?

It is recognised for long that when things dramatically
change in scale, the thing is not just anymore the same but
with another size. It get more like 1 + 1 = 3. Sometimes
this is referred as “at some point when increasing quantity,
there is a change in quality” or in our case “at some point
along the scaling-up there must be a change in approach,
sometimes referred as a “paradigm shift” is approaching.

Some companies
retain success
and others fail
when getting into
complexity.

Scaling up is like 1
+ 1 = 3. At some
point more than the
size has changed, a
paradigm shift has
occurred.

Overall CHAPTER 1: Warning Bells What has gone wrong ?

26 Complex Product Development and its Management by Christer Sandahl

If the paradigm has shifted, the old methodology and
approach must be replaced, and a radical new way of
thinking must be applied. For example, house stairways
must be replaced by elevators when houses get higher,
growing software must be partitioned into smaller
pieces separated with clear interfaces, slide rules get
replaced with digital calculators, key hole surgery being
far more efficient than open big wounds etc. The world
is full of (smaller and bigger) paradigm shifts.

And back to the initial question, why nailing with a cudgel. Developers might nail
with a cudgel because their approach hasn’t been scaled up to the actual complex-
ity facing them. A paradigm shifts has occurred but was ignored. The cudgel was
successful against primitive enemy tribes, but has got very inappropriate for nail-
ing.

1.1.5 Short about complexity

With complexity means, when a set of system parts have relations to each other, in
a way that forms a total system that is hard to understand and predict.

Let’s look at the solar system. When copernicus placed the sun in the middle,
Isaac Newton was able to describe the motion of all planets with his “laws of
motion”. This is rather ordinary mathematics, referred as the “n-body problem”,
which can be analytically handled.

But complexity reappear at this stage. It was rather simple to solve the equation for
n = 2, e.g. two planets like the sun and the earth being alone in the solar system. It
took several hundreds of years to solve it for n = 3, e.g. three planets like the sun,
the earth and the moon being the only planets. For n greater than 3 it is still not
completely analytically solved, but the challenge has lead to a lot of chaos research.

This is in short what happens when scaling-up. Very soon the system parts form a
total system that possibly might be described, but gets hard to understand and pre-
dict. Often such systems are referred as systems in chaos. The system itself doesn’t
know that it is in chaos, of course it is our understanding that is not good enough.

The general way to treat complexity is to make research, in order to enough under-
stand the complexity. If still too complex to be handled, some mitigation can be
tried. One way might be to limit the degrees of freedom and accept a lesser accu-
racy of understanding, for example by approximations (the moon has no influence
on the sun), or to freeze some relations (the sun is assumed fixed in the centre).

C
om

pl
ex

A
ve

ra
ge

Control Chaos

Par
ad

ig
m

 sh
ift

ign
or

ed

p
ar

ad
ig

m
 s

h
if

t
w

el
l m

an
ag

ed

Far
out

Complex Product Development and its Management by Christer Sandahl 27

Overall CHAPTER 1: Warning Bells When should you hear the warning bell ?

Have you ever reflected over why houses prefera-
bly have right angles between most building ele-
ments. Do you get the point? Simply because this
lowers the complexity and makes a house easier to
understand, predict and build. The Beijing Bird's
Nest, not having two similar angles anywhere, has
such large complexity that it had been impossible
to handle in the slide rulers era, but could be mas-
tered by designing with powerful computers.

1.2 When should you hear the warning bell ?

A company having problem with mastering its complexity, shows many symptoms
from this if anybody care to watch. And most often these symptoms has continued
for a long time. Scaling up is a slowly creeping effect, and problems may be small
and silent in the beginning, but hitting hard after a while if not cured.

And there are reasons to watch out. The first company to identify an approaching
paradigm shift and succeeding to overcome the challenge, is coming out very
strong and competitive. Instead of being gradually slowed down by growing legacy
complexity, they can capitalize on their new way of mastering it, and in short time
get ahead of their competitors.

The most obvious examples are paradigm shifts in warfare, which could even
change the balance of power between whole countries. A lot of effort is spent on
intelligence and reconnaissance in order to watch the enemies effectiveness.

One may perhaps argue that it is not a big problem if a
development organisation is internally messy and in disor-
der, because this will not trouble their customers. But this
is often wrong, because this disorder will as well be built
into their products, which will get the same lack of struc-
ture and quality, and will thereby finally hit their custom-
ers.

To identify problems with mastering complexity in development organisations,
watch out for the following 13 warning-bells:
1. "EXAMPLE: Unrealistic campaigns continually restarted" (page 28).
2. "EXAMPLE: Management not being accountable" (page 28)
3. "EXAMPLE: Root cause analysis being suppressed" (page 29)
4. "EXAMPLE: New wrapping with same content" (page 30)
5. "EXAMPLE: Ego people being change agents" (page 30)
6. "EXAMPLE: Sub optimization within local organizations" (page 30)
7. "EXAMPLE: Scapegoats of a blame game" (page 31)
8. "EXAMPLE: Products driven by engineers" (page 31)
9. "EXAMPLE: Product structure being degenerated" (page 32)
10. "EXAMPLE: Impossible principles applied" (page 32)

Disorder during de-
velopment, result in
that this disorder is
also built into de-
veloped products.

Overall CHAPTER 1: Warning Bells When should you hear the warning bell ?

28 Complex Product Development and its Management by Christer Sandahl

11. "EXAMPLE: Artificial complexity being pushed" (page 33)
12. "EXAMPLE: Intrinsic complexity being ignored" (page 33)
13. "EXAMPLE: Devils in the details being ignored" (page 34)
14. /* EXAMPLE: Continually decision reset */

1.2.1 EXAMPLE: Unrealistic campaigns continually restarted

In this case, improvement campaigns are being broadcasted from management and
the message from them might look like Figure 1-1 below.

FIGURE 1-1 Improvement campaign goals

Probably you have seen such programs sometimes passing
by. Most of the energy is put on cheering and making noise,
and less on analysing, understanding and implementation
of changes. Very often these campaigns are very intense in
the beginning but are fading out as time pass. You may also
have ended up with the feeling, that not much have been
achieved at the end of the campaign (even if graphs are cir-
culated proving the contrary). And for that so little is deliv-
ered, seldom anybody are found responsible.

When a new manager enter the organisation, the campaign is restarted again to
show drive and energy. But of course with different names, concepts and symbols,
but with the same type of unrealistic campaign.

1.2.2 EXAMPLE: Management not being accountable

Managers are the most important group of employees, when to establishing good
and efficient working models. Over and over again, it has been found that making
improvements and establishing working models is more or less impossible without

Warranty
 Cost

Cost of
Sale

This year Year 2 Year 3 Year 4

Development
Time

Development
Cost

Why are many or-
ganizations run-
ning improvement
projects, one after
another, without
sustainable re-
sults ?

Complex Product Development and its Management by Christer Sandahl 29

Overall CHAPTER 1: Warning Bells When should you hear the warning bell ?

active support from managers. Keep a watch on the following criteria, which often
prevent from setting a sound company culture:

• Managers not specially interested in how his inferiors are working, and claim-
ing that they are expected to sort out that themselves.

• Managers thinking it is more important keeping pease in his organisation and
reporting to superior management that everything is working fine, instead of
risking noise from solving severe problems.

• Managers not ever acting pro actively to problems. Their habit is always to wait
until the failure is a matter of fact, before they take action.

• Managers pretending to be interested in work models, but just desire to silence
their conscience. They might engage persons to document and improve, with
the hidden agenda to archive the results in binders in order to be forgotten.

• Managers acting grandiose, and claim that they already have everything under
control. For example, imagine that this book were shown to them. They would
answer that here is nothing new they didn’t already knew. It’s a great book, but
we already work according to it.

It is seldom possible to influence on which managers
there are in a company, but yet it sets the level for
improvement success. It is waste of energy to try to
improve companies with inappropriate management.

1.2.3 EXAMPLE: Root cause analysis being suppressed

Sometimes a frenetic “improvement wave” can be spread over an organisation.
One after another wants to be the best on improving the way of work. It may even
happen that upper managers tries to beat each other with efficiency programs and
rewarding improvement proposals.

Their eagerness admit no time to structure the improve-
ment work, and improvements get started on every imagi-
nable spot of the organisation. Everything are object for
reparation and improvement. Current work models are
declared insufficient and are discarded (and forgotten),
like throwing the baby out with the bath water, in favour
for new bright improvements to come.

Unfortunately, sufficient analysis are not being made,
pointing out the poor parts being most urgent targets for
improvements, and what parts in fact is “good enough”, at least for a while. Nei-
ther it is planned in what order the poor parts need to be fixed. Often organisation
are very well aware of existing real problems and bottle necks, but courage are lack-
ing to present these facts and get these problems visible. It is much more conven-
ient to sweep the most ugly problems under the carpet and report about more
harmless shortages. They are not so embarrassing and they are much easier to fix.

“The management
culture” is the most
influential on how
complexity is han-
dled and improved.

An objective and
honest root cause
analysis might be
embarrassing and
inconvenient, but is
most essential for
serious improve-
ment management

Overall CHAPTER 1: Warning Bells When should you hear the warning bell ?

30 Complex Product Development and its Management by Christer Sandahl

1.2.4 EXAMPLE: New wrapping with same content

Even if development is complex, there is certainly a
limited amount of fundamental ways how to organize
product development. This fact is troublesome for
methodology consultants, salvation authors (myself
being an exception:-) and other confidence trick mak-
ers. But like in the fashion business, this is solved by
change the wrapping and reintroduce old things as
being the latest inventions, that are urgently needed by
everybody.

People too young in the development business was maybe not there the last time
these things were in fashion. And managers may not have time enough to pene-
trate and disclose all “package” tricks. Like fashion consumers, people in general
fear the risk to be regarded uninformed and old fashioned.

When these arguments arise from consultant sales persons or by improvement
proposals from inferiors, it easily happens that it is decided to acquire similar
things (but differently named and described) that might already be acquired and
even might be in place.

1.2.5 EXAMPLE: Ego people being change agents

Many persons love to start up new things, to be inventive persons, to get a lot of
attention and look busy, and to be hang-arounds to influential managers. They use
their charisma to sell in solutions to anyone in need for anything.

But after a while, when it gets harder to deliver and show
promised results, these persons pop up somewhere else in
the organisation with other newly started improvements. If
follow-up from management is poor, these persons are never
made responsible for what they promised but not delivered,
and can proceed to jump around.

Needless to say, this example is a disaster for improvement activities and the
organisation moral. Much more of this will be discussed in the chapter "Meta
CHAPTER 18 Improvement & Assessment", at page 251.

1.2.6 EXAMPLE: Sub optimization within local organizations

When organizations get that large, that everybody don’t meet each other face to
face any more, there will appear more and more individuals not being in contact
with each other. This is nothing wrong in itself, in a big company everybody can
not work together with everybody else.

Trousers can not be
designed in so many
different ways. But
the fashion business
succeeds, over and
over again, to sur-
prise us with yet new
trousers.

Charisma people
are very useful,
but never ap-
point them in ex-
pert positions.

Complex Product Development and its Management by Christer Sandahl 31

Overall CHAPTER 1: Warning Bells When should you hear the warning bell ?

To still bring employees to share the company culture and
value chain, there is now an emerging need to work with
formal documentation and improvements on many
abstraction levels. As a consequence of this, it can often
be seen that groups internally works very efficient and
structured. But if looking on how these groups contribute
together for the company result, it might be very ineffi-
cient, or the groups might even destroy each others work
results.

The higher up in an organisation the bigger are the effects of problems and
rewards from efficient solutions. But in many companies this fact is not recog-
nized, and even the revers may occur. On low level there might be a dedicated
improvement work ongoing, but the higher up in the organisation, the more unin-
teresting managers get for improvements and an efficient way of working.

1.2.7 EXAMPLE: Scapegoats of a blame game

If crisis of any kind hits a development company, it is quite natural that everybody
tries to protect themselves, and managers tries to protect their organisations. One
way to protect yourself, if you can make believe the cause of the crisis are outside
of your own domains, is to declare that you and your organisation was only an
innocent victims. Often a company executive group get pressure from the boards
and owners, and must present drive and improvement programs to overcome the
crisis.

Altogether, there is a high desire to point out scapegoats in order to try to hide
own responsibility. And in the same pattern as common mobbing mechanisms, the
weakest parts of the company organisations is less dangerous to attack.

Not seldom seen, is that executives point out the engi-
neering value chain to be the cause for the crisis. There
are examples, that even if the crisis obviously was
caused by outdated product portfolios delivered by
incompetent market organisations, it ends up with the
management declares that developers are working in
the wrong way.

A good way to eliminate such mismanagement, is to demand root cause analysis.
But the opposite is more common, it is easier and more controllable to point out a
weak scapegoat, than to launch a root cause analysis which may find skeleton in
anybody’s cupboard.

1.2.8 EXAMPLE: Products driven by engineers

Many product markets (even if being very technical products) are not different
from the fashion market. It is the price tag and the appearance of the product that
is most important, and the rest of the product characteristics must only reach
above a normal “hygiene standard”.

Even if a group per-
forms very well, it is
not thereby given
that it brings any
substantial value to
the organisation

The value chain and
people working with
the value chain, are
often targets when
searching for scape-
goats of a crisis.

Overall CHAPTER 1: Warning Bells When should you hear the warning bell ?

32 Complex Product Development and its Management by Christer Sandahl

If a company is governed by mostly technical people,
the reverse might occur. Then the technical systems
within the cabinet get most important and heavily
improved but the outlook is kept as boring as forever.
User perceived quality may slip because feedback from
the market is ignored. A high return rate and warranty
cost is often the result.

A company may have a lot of market driven people and managers, but despite this
might still be engineering driven, because a strong channel might be missing to
convey market driven requirements into the centre of the engineering departments,
for more details about this see the chapter "Detail CHAPTER 6 Requirements", at
page 109.

1.2.9 EXAMPLE: Product structure being degenerated

Product structure and architecture are often the most misunderstood of all devel-
opment concepts. It is very strange, because for the house construction business
the architect is both important and well understood. In hardware development it is
fairly well understood, because the components are tangible and can be likened to
rooms in a house.

But when coming to software, it might be totally impos-
sible to make analogies to rooms, flats, floors etc. A
software construction that has been uncontrolled
extended for long time, may have an architecture very
similar to a allotment-garden cottage. Small rooms has
been added to the house body every summer but the
body itself has never been reconstructed. This ends up
in a cottage with a large amount of rooms, nooks and
corners, but nowhere any continuous space for living.
More about understanding architecture will be discussed in the chapter "Detail
CHAPTER 7 Architectures", at page 151.

1.2.10 EXAMPLE: Impossible principles applied

To build a company on strong principles are generally a good sign, for example like
the successful companies Toyota and Ikea. But be aware of, that if wrong or
impossible principles are selected, then the damaged will be equally strong as the
success would have been.

A striking example on implying impossible principles is the
construction of the Swedish warship Wasa. Sweden was in
war with Poland, and needed better fire power in their navy.
Thus, there was a heavy force from the Swedish king to
equip the ships with as many cannons as possible. Conse-
quently the ship Wasa had too many cannons compared to
its size and ballast, but despite this the king ordered the
launch of the ship. After ten minutes in fine weather, the
ship capsized and sunk in 1628.

Engineer driven de-
velopment is often
carefully watched.
But to ensure it will
not happen is hard.

A software structure
might be as degener-
ated as an allotment-
garden cottage. A lot
of rooms, nooks and
corners, but no-
where to live.

What a competi-
tive edge it would
be for a company
which succeed to
“suspend gravita-
tion”. But what are
the chance ?

Complex Product Development and its Management by Christer Sandahl 33

Overall CHAPTER 1: Warning Bells When should you hear the warning bell ?

Another example is a company having big problems to handle their system, which
grew bigger and bigger for each day, resulting in uncontrollable organisations. The
system engineering department was not in control and was even seen to be
unneeded. However, a big improvement project was started and the upper man-
agement announced “the principle of de-coupling”, meaning that different parts of
the system should be developed separately from each other and handed over from
smaller organisations for integration and assembly.

The “only” annoying problem was that the architecture of the system was far from
being decoupled, and no sub-system interfaces were described, visualized or man-
aged. Few of the persons in the management understood, that if the system wasn’t
partitioned in parts, it was useless to partition the organisation. A lot of time,
energy and money was thrown away when to divide the company into decoupled
organisations, but without decouple the technical system parts from each other.
More of this will be addressed in the chapter "Detail CHAPTER 7 Architectures",
at page 151.

1.2.11 EXAMPLE: Artificial complexity being pushed

One of the best examples on this, even if far from the product development world,
is the old solar system model with the earth in the centre. The solar system model
showed the movement of all planets assuming that they were connected on
spheres that were rotating at different speed. But some observations were really
difficult to explain with this model. For example, it was not so seldom seen that a
planet moving over the sky, suddenly reversed its direction and retrograded for
some time, before reversing once again and proceeding in the original direction.
The more irregularities of planet movements that was observed, the more epicycle
spheres was put into the solar system model.

Complexity in this model was actually added by humans, and consequently most of
it disappeared when Copernicus released his model with the sun in centre (by the
way, a substantial paradigm shift).

In product development it is easy to end up with too
many “spheres” and everything gets more and more
impossible to understand. Every model builder is not as
brilliant as Copernicus, but the warning bell should be
ringing, when working models gradually gets too complex
to understand. It might be the consequence of a model
that has evolved beyond its initial simple context, and
must be replaced by a more well-reasoned one.

1.2.12 EXAMPLE: Intrinsic complexity being ignored

This is the opposite to the preceding example and might ring the warning bell as
well. Product development can be really complex, du to very complex products
that are being developed in shorter time that is possible (so to say).

One good example of this is when a system to be developed has varying lead times
in different architectural parts. For example, turn around time for making a new

Things should be
made as simple as
possible - but not
simpler.
 - Albert Einstein

Overall CHAPTER 1: Warning Bells Your way out of this

34 Complex Product Development and its Management by Christer Sandahl

software release might take a couple of days, while making a new ASIC may take
some years to prepare.

If you neglect the different lead times for the software
and the ASIC, you never succeed to get requirement
management started in the right time for different archi-
tectural parts. That implies that different parts will not
be ready for integration at the same time, which implies
that some parts must wait for other parts to get ready.
Or that some parts must be used despite they are not yet

finalized.

The point is, that if the complexity of different lead time is not taken care of in the
work model, the requirement management will never succeed.

1.2.13 EXAMPLE: Devils in the details being ignored

Of course it is important that top management are supporting improvement work,
but it might be dangerous to drive and organize everything strictly top-down.
Some nasty details can be as hard to overcome as a law of nature. An improvement
without experts checking in advance for devil’s details may come out to nothing.

A good example is when totally development lead time must
be shorten. That means to do the same things like before,
but on shorter time, which in turn often results in doing
more and more things in parallel. To understand that the syn-
chronisation between parallel work will still be possible in
practice, a critical path analysis must be performed on the
new parallelism to apply.

At some point in trying shortening the lead time, it is not possible to further
increase the degree of parallelism, because some details of the devil sets the limit.
For example, it take some minimal time to get an ASIC (silicon chip) produced
after you have submitted all ASIC drawings and this time isn’t realistic to shorten
beyond a certain duration. For analyses of critical path it is essential to involve
experts of details, knowing the critical path and where unconditional limitations
sets in for each activity in the path.

1.3 Your way out of this

Above chapters describe symptoms when complex devel-
opment are deviating in wrong ways. It is very important
to diagnose such symptoms in an early stage, when it is
still easy and cheap to cure. But how to carry out this treat-
ment? This book give one clear answer to it - the develop-
ment organisation must better master their complexity
they face.

Again, things should
be made as simple
as possible - but not
simpler.
 - Albert Einstein

The saying “little
strokes fell great
oaks” might be
terrible decisive
in complex prod-
uct development.

This book do help
you out. (In this
book, important
statements are
shown like this)

Complex Product Development and its Management by Christer Sandahl 35

Overall CHAPTER 1: Warning Bells Your way out of this

To learn about complexity is hard and there is certainly no short cuts. This book
intends to give you a palate of aspects on complexity, that can help you to discuss,
understand and come up with improvement proposals that really help.

(If you find this book being impolite when claiming that you need help, but in fact
you don’t, please instead review this book and send back your comments to the
author).

This is not just an academic book that only enumerate all plausible facts of com-
plex development, but it is instead a book covering real experience and long time
learning. It contain a almost endless amount of examples from various relevant
development worlds. But this book doesn’t stop even there, it also put all these
examples into context of the whole lot, in order to capture and illustrate the com-
plexity behind. And that is in fact what you are in big need of, but seldom get from
other books. This book will take you underneath the skin of complex develop-
ment, and prevent you to fall into any of the pit-falls presented above. Good luck!

Overall CHAPTER 1: Warning Bells Your way out of this

36 Complex Product Development and its Management by Christer Sandahl

255

Term In this book Out there
Architecture How the structure of an artefact is assembled by its parts,

including immaterial artefacts like software.
About the same

Artefact Something developed or produced by humans, including
immaterial artefacts

About the same

Black-box (BB) Demarcation which not disclose anything of its internal con-
tent, but only showing properties of its surface, and behaviour
via its interface. Properties and behaviour are described by
requirements.

About the same

Component A sub-system being explicitly developed or extracted from a
finished system, in the way that it can be easily understood and
reused without significant rework. Electronic components are
typical, even if they often have small granularity.

About the same

Decompose To split up an architecture black-box into its white-box, con-
taining design elements (some of which can be underlying
black-boxes).

About the same

Description Information about an artefact. Always be careful when referred
to an artefact, is it the artefact itself or is it its description being
referred.

About the same

Design (noun) See design element.
Design (verb) Transform black-box requirements, to design elements in

resulting white-box.
Rather similar

Design element Anything showing up when decomposing a black-box, e.g.
underlying black-boxes, electronics, software commands etc.
Design elements can be developed and finished without a new
layer of formal requirements.

Many definitions

Development Translate an product idea (satisfying a market demand), into
descriptions and prototypes, making a production possible. Be
aware, to not mix production and development together.

About the same

Formal Comply to concepts that are shared by colleagues. More vague
Granularity Size of components (compared to size of assembled system). About the same
Interface Interactions with a system (or sub-system) are through its

interfaces. If the system (or sub-system) is judged a black-box,
the interface requirements must be described and managed.

About the same

Life cycle status Regarding a named artefact to only change maturity states, dur-
ing its life from birth to death. The life cycle status reflecting
the maturity might be stated after the name.

About the same

Line (manage-
ment)

The static and most often hierarchal structure of managers to
lead a company.

About the same

Managed infor-
mation

Information is said to be managed, if it is uniquely identifiable,
documented, obeyed and updated to always reflect the reality.

About the same

Module A sub-system without clear interfaces to its system. It can have
a explicit name, but it is not easy to understand how it interacts
with the system or how it is demarcated from the system.

Unclear distinc-
tion between
module and
component.

Object A self-contained and autonomy artefact. Close in its meaning
to a small black-box.

About the same

Product A product is an artefact, created by somebody, from raw mate-
rials, to finished goods, for a market, to satisfy a need.

About the same

Glossary of terminology

Overview Table of Contents

256 Complex Product Development and its Management by Christer Sandahl

Product life cycle
(PLC)

Time period, from a product idea is invoking a development,
until the product is out-phased on the market, including even-
tual warranties.

About the same

Production To realise and multiply construction in volumes, based on
developed construction documentation and prototypes. Be
aware, to not mix production and development together.

About the same

Project A temporary structure in a company, to accomplish an
assigned objective, and restricted by limited conditions (time,
cost etc.).

About the same

Project leader The manager of a project, reporting to the project sponsor. About the same
Project office A line manager with a pool of project leaders About the same
Project sponsor A line manager ordering and controlling a project. About the same
Property Observable characteristics on the surface of a system (or sub-

system). If the system (or sub-system) is judged a black-box,
the property requirements must be described and managed.

About the same

Refine Narrow in black-box requirements to match contained under-
lying black-boxes.

Can mean what-
ever

Requirements The behaviour and properties of an artefact. About the same
Specify Users capturing wishes from a system. Much more

vague
Stakeholder Anybody that have interest in what are specified by require-

ments. A stakeholder might be an end user of a system to be
developed, an orderer paying for the development, a verifier
testing a developed system against its requirements, etc.

About the same

Sub-system Partition or part of the system to be developed. If a sub-system
is judged complex, it should be considered as a black-box with
requirements to describe it.

Much more
vague

System The precise target demarcation for what is to be developed, no
less, no more.

Much more
vague

Value chain The factual way that work are performed in a company (to add
value to it), regardless if it is understood or described.

More vague

White-box (WB) Demarcation of an amount of visible design elements. When
opening a black-box it gets a white-box containing embedded
black-boxes and other design elements. Be aware that a white-
box always has requirements, that has been updated to still sat-
isfy the chosen white-box design.

About the same

Term In this book Out there

Under the Skin of Complex Product Development by Christer Sandahl 257

Overview Table of Contents

Term In this book Out there

Overview Table of Contents

258 Complex Product Development and its Management by Christer Sandahl

259

A
Architecture 32, 33
Architecture maintenance 209
ASIC 34

B
Big bang integration (example) 91
Bird’s Nest, Beijing 27
Board of directors 222

C
Chaos 26
Compatibility, backward 237, 238
Compatibility, forward 237
Complexity, artificial 33
Complexity, development 30
Complexity, growing 264
Complexity, high 25
Complexity, intrinsic 33
Complexity, low 24
Complexity, mitigation 26
Complexity, multiplied levels 24
Complexity, short about 26
Complexity, transition from low to

high 25
Computer program 65, 66
Cooking the main course (example) 232
Copernicus 33
Critical path 68, 99
Critical path analysis 34
Customer 66

D
De-coupling 33
Details, devil in 34
Development, bridges 24
Development, conclusion of series of

examples 98
Development, different lead time 232
Development, different lead times

(example) 233, 235
Development, double staffing 87
Development, extending all modules 240
Development, extending

continuously 240

Development, extending features
(example) 241

Development, extending modules and
features (example) 241

Development, extending sw & hw
(example) 238

Development, feature parallel mania
(example) 93

Development, four features
(example) 96, 97

Development, houses 24
Development, ignoring system

(example) 236
Development, in disorder 27
Development, iterative (example) 87
Development, iterative decomposition

(example) 91
Development, late requirements

(example) 84
Development, moderate parallelism

(example) 83
Development, parallel mania

(example) 81
Development, products 24
Development, prototyping 86
Development, single feature

(example) 93
Development, sky scrapes 24
Development, system decomposition

(example) 89
Development, two feature (example) 94
Development, two feature on isolated

branches (example) 95

E
Ego people 30
Entrepreneurship 264

F
Finished goods 38
Flow of activities 65, 69
Flow, executable 65
Flow, support 67
Forum 221

Index

Index

260 Complex Product Development and its Management by Christer Sandahl

G
Gnosjö area 264

H
Hygiene standard 31

I
IKEA 38
Immaterial asset 64
Improvement campaigns 28
Interfaces 33

L
Lead time 34, 99
Leading group 222
Life cycle status 73
Line accountability 221
Line organisation 64

M
Management, acting grandiose 29
Management, bad conscience 29
Management, keeping pease 29
Management, line 207
Management, not accountable 28
Management, not interesting 29
Management, not proactively 29
Managing director 222
Man-time (actual) 80
Man-time (effective) 80

N
Nail with a cudgel 24, 26
N-body problem 26
Newton Isaac 26

O
Organisation structure 208
Organisation versus architecture

(example) 220
Organisation, a kind of architecture 208
Organisation, large size 211, 219
Organisation, middle size 210
Organisation, small size 210
Organisation, uncontrollable 33
Organisation, very large size 221
Organization, line 208
Owner 221

P
Pantheon 24

Paradigm shift 25, 26, 27, 33
Parallel work 34
Prefabricate 102
Principles, impossible 32
Producer 76
Product 66
Product development 33, 37, 38, 40
Product life cycle 38
Product, aspects of 38
Product, driven by engineers 31
Product, in disorder 27
Product, structure 32
Production description 64
Products, degenerated 32
Products, profitable quality 25
Prototype 64

R
Raw material 38
Requirement management 34
Requirements, late (example

revisited) 103
Result orientation 72
Results 69
Roles 76
Root cause analysis 24, 29

S
Sandahl Christer, the author 264
Scaling up 25, 26, 27
Scaling up line organisations 210
Software 24, 32, 34
Solar system 33
State machine 75
Structure of parts 76, 110, 130, 131, 135,

140, 152, 153, 208
Supplier 66
System engineering 33

T
Time to market 40
Top-down 34

V
Value added 67
Value added tax (VAT) 67
Value chain 64, 66
Value chain block activity-activity 73
Value chain block activity-result 74
Value chain block executor and

producer 76

Index

Complex Product Development and its Management by Christer Sandahl 261

Value chain block result-result 75
Value chain block, state machine 75
Value chain follow-up 69
Value chain life cycle status 73
Value chain links 68
Value chain overlaying line

organisation 212
Value chain ownership 223
Value chain results 69
Value chain state machine 75
Value chain, activities and results

(example) 69
Value chain, activity flow (example) 68
Value chain, basics (example) 67
Value chain, building blocks 73
Value chain, concept 65
Value chain, conservation 212
Value chain, development 64
Value chain, product 64
Value chain, result orientation

(example) 72
V-model 90

W
Warning-bells 27
Wasa, Swedish warship 32
Waste 80
Waterfall 78
Work across value chain (example) 216
Work along and work across mix 217
Work along value chain (example) 214
Wrapping, new with old content 30

Index

262 Complex Product Development and its Management by Christer Sandahl

Complex Product Development and its Management by Christer Sandahl 263

Christer Sandahl has for over 40 years been liv-
ing in the engineering world. Beginning with
photo and chemistry in his teenage, over to
electrical engineering in university, and into
computer design as professional.

In his early working life Christer has all by him-
self several times constructed large computer
systems, both hardware and software.

When computers got large and complex, he
has for long periods managed software groups
in successful local companies as well as in large
world wide combines, such as Sony Ericsson,
and Axis Communications.

Christer has grown up in the “Gnosjö area” of
Sweden, the origin of entrepreneurship. His
family has a large transportation company, he
and his brother has quality wine production in
Hungary, and Christer has of cause taken on
this way of life in his engineering profession.

- Why is malfunctions common in computer products?
- Why is it frustrating to operate our everyday products?
- Why do most development projects get out of hand?

It become more and more evident that behind those prob-
lems, is mainly the ever growing complexity, which is not
enough understood and mastered.

If deciding to master complexity, there are no single easy
cures. You need generalists, you need specialists, but most
essential, you need people that are both, to establish effi-
cient bridging between all different areas of development.

This book describes all those concrete elements of complex
product development, and ties them together to a uniform
conception. With you in mind, all descriptions comes with
plenty of real examples and illustrations, from prestigious
board rooms down to the plain floor.

Don’t ever tell me you didn’t get a chance.

